
Honours Individual Project Dissertation

MACHINE LEARNING MODELS WITH
NATURAL LANGUAGE PROCESSING AS A
USABLE ONLINE TOOL FOR FAKE NEWS

DETECTION

Kārlis Siders
March 24 2023

i

Abstract

With the increasing spread of fake news on all online social media platforms and the difficulty
of detecting fake news by the average social media user, there is a need for automatic detection
methods to be used to keep the integrity of news shared online. This necessity is currently
exacerbated on Twitter, a source of news for many, with its changing leadership roles and,
consequently, policies. Since there is much literature about different solutions to the problem, this
paper aims to describe the general problem at large, the various concepts used in other literature,
and describe the requirements-gathering, design, implementation, and evaluation stages of such
a project. The project investigated how two Machine Learning algorithms, Logistic Regression
and BERT, can be made and trained using Natural Language Processing techniques to detect
fake news in Tweets, with the unique nature of building and sharing a usable tool for users to
access. While the Logistic Regression algorithm achieves only 82.8% accuracy (with an F1 score
of 82.6%), BERT achieves an accuracy of 99.2% (and an F1 score of 99.4%), which, while being
impressive for the given dataset, is not generalisable much to modern Tweets.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes.

Signature: Kārlis Siders Date: 21 January 2023

ii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Goals 1
1.3 Structure 2

2 Background 3
2.1 Fake News Definition 3
2.2 Technical Explanations 3

2.2.1 Machine Learning 3
2.2.2 Natural Language Processing 3
2.2.3 Machine Learning Models 4
2.2.4 BERT 5
2.2.5 Machine Learning Model Evaluation Metrics 7

2.3 Existing Solutions 7
2.3.1 ML in Classification 8
2.3.2 NLP in Classification 8
2.3.3 Limitations 8

3 Requirements 9
3.1 Functional Requirements 9
3.2 Non-Functional Requirements 10

4 Design 12
4.1 Overview 12
4.2 Dataset Acquisition and Transformation 12
4.3 Natural Language (Pre-)Processing 13

4.3.1 BERT Tokeniser Parameters 13
4.4 Machine Learning Models 14

4.4.1 BERT Model Training Parameters 14
4.5 Hosted Website 14

5 Implementation 16
5.1 Overview 16
5.2 The Dataset 16

5.2.1 Acquisition 16
5.2.2 Analysis 17
5.2.3 Transformation 18

5.3 Input Building 18
5.3.1 Logistic Regression-Specific 18
5.3.2 BERT-Specific 19

5.4 Logistic Regression Model Training 20
5.5 BERT Model Training 20

5.5.1 Optimisation 21
5.5.2 Memory Issues 21
5.5.3 GPU Acceleration 21

iii

5.5.4 Validation Loss 22
5.6 Website Building 22

5.6.1 Django 22
5.6.2 User Interface 22
5.6.3 Form Submission 25

6 Evaluation 26
6.1 Evaluation Metrics 26

6.1.1 Standard Performance Metrics 26
6.1.2 Confusion Matrix 26

6.2 Generalisability 29
6.2.1 Losses During Training 29
6.2.2 Modern Input 29
6.2.3 Potential Reasons Why 30

6.3 Further Improvements 30

7 Conclusion 32

Appendices 33

A Twitter API Educational Access Form 33

B Base Django Template for Website 34

C Dataset Phrase Analysis 36

Bibliography 37

1

1 Introduction

1.1 Motivation
Fake news is a concept that every Internet user knows all too well because of its rapid spread over
every social media platform and forum. Journalists and researchers have been actively searching
and developing ways to minimise the spread, and many organisations have been created just for
the purpose of identifying and spreading awareness about popular fake news online. For example,
the popular PolitiFact platform uses real people (the reporter who researchers and writes about a
specific topic and two editors who check both the writing and the assigned category of truth in
their own scale called the Truth-O-Meter1) to identify fake news (Holan 2018). However, with
the growing spread of fake news, the sheer amount cannot all be analysed by a dedicated team
of researchers, which is why a machine learning model which can analyse any number of texts
with measurable accuracy is one of the optimal solutions to detecting fake news.

There are many articles online to help people distinguish between fake and real news (DiSilvestro
2022), which essentially define the relevant terms, describe critical thinking and do nothing else.
What I wanted to do was give a real tool for people to use and determine whether a post is likely
to be fake news or not.

With Twitter being taken over by Elon Musk, who seemingly does not care about the spread of
disinformation as Twitter has "stopped enforcing its policy on misleading information about coro-
navirus" (Schrael 2022), the detection of fake news has become ever more important, especially
on Twitter.

1.2 Goals
Machine Learning Model with Natural Language Processing Build an ML model that
uses NLP to analyse the text and other features of Tweets in order to make a decision about
whether it is fake news or not. The model should use modern technology with some of the latest
developments in both machine learning and natural language processing in order to achieve
higher accuracy and be usable.

Better Than Human Performance Because the average Internet user can correctly distinguish
between fake and real news with only 54% accuracy (de Oliveira et al. 2021), the model’s accuracy
and F1 score2 should be better than 54% in order for the tool to be at all useful for users.

Two Comparable Models Have two models, one that uses Twitter API to get multiple features
from a Tweet and one that uses only text, which in turn can be generalised for any text. The
former, more complex, model would depend on Twitter API, which would make it dependent
on any ongoing changes at Twitter, and with Twitter’s micro-services being at risk (Dean 2022),
the model could turn out to be unusable in the future. Therefore, the smaller, simpler, model
would act as a more stable backup model.

1This robust method of research is also the reason why I decided to use the dataset containing their data in my model.
2Explained in Section 2.2.5.

2

Online Tool Build and host a website that hosts the models built previously for Internet users to
access and be able to predict the veracity of text and/or Tweets. The website should be easily
navigable and understandable for users without any knowledge of machine learning or natural
language processing to use.

1.3 Structure
Chapter 2 gives the existing definitions of fake news, explains the core concepts behind the project,
along with a review of existing solutions for similar research problems and their limitations.

Chapter 3 discusses the problem space of the project and how it was discovered and analysed.

Chapter 4 outlines how the solution to the problem was designed with the core elements of the
project highlighted, including dataset acquiescence, NLP pre-processing, building of the ML
model, validation of the model, evaluation, and building of a tool that uses this model.

Chapter 5 discusses the many parts of implementing the solution to the problem, including
dataset analysis and cleaning using traditional and NLP techniques, ML model choosing and
implementing, and Django website building.

Chapter 6 explains how the model and website were evaluated using the appropriate evaluation
methods, including the confusion matrix and different accuracy scores for the model.

Finally, chapter 7 summarises the project’s problem, solution, and its effectiveness with the
limitations highlighted.

3

2 Background

2.1 Fake News Definition
Fake news is a concept with a large spectrum of definitions that remain contested by academics
and are ever evolving to keep up with new ways in which false information is spread online.
Defined earlier as "fabricated information that mimics news media content in form but not in
organizational process or intent" by Lazer et al. (2018) and later as "synonymous with the spread
of false information on social media" by de Oliveira et al. (2021), it is a concept ripe for grey areas,
with unclear boundaries around whether omissions and exaggerations of fact amount to fake
news. However, the nature of it is clearer: its spread over the Internet is rapid, and researchers
have been developing methods to counteract it for decades. This chapter describes the technical
background necessary for the project, and existing solutions to combat fake news.

2.2 Technical Explanations
2.2.1 Machine Learning

Machine learning (ML) has developed with huge leaps in the last few decades, with new applica-
tions of machine learning models being found every day. Because of improvements in CPU and
GPU performance, new ML model efficiency, and digitalisation of environmental data, machine
learning can be and has been used for an increasing amount of projects to improve many aspects
of life.

ML can be split into three main parts: supervised learning, where there is labelled data that a
model learns from and tries to understand the underlying relationships between the input and
the expected output; unsupervised learning, where the goal is mostly to find similarities between
items and group them; and reinforcement learning, where there are general metrics that the
model tries to improve based on trial and error while interacting with some environment, like
autonomous driving (Coursera 2022). Because the project is about classifying social media posts,
supervised learning is what this paper will focus on.

2.2.2 Natural Language Processing

In order for any ML model to learn to understand human language, the input text needs to first
be processed with Natural Language Processing (NLP) techniques. NLP in machine learning
has largely been developed with the goal of perfecting machine translation in mind; however,
there are many other applications in the last decade, including image captioning, web search,
and speech understanding (Deng and Liu 2018).

These techniques are all applied sequentially in what is usually called an NLP pipeline. The
pipeline consists of tokenisation, stop word removal, and vectorisation, among other more optional
stages.

4

Tokenisation The very first step of the NLP pipeline is tokenisation as it is necessary to first
transform the unstructured data that is text into some sort of structured data, in this case tokens.
Tokens are collected by splitting larger sentences into standardised parts, like words, punctuation,
and sentence separators.

Stop Word Removal In order to remove clutter that does not add much value to the meaning
of a sentence, certain words which do not mean much, like "the", "is", "are", etc, are removed
from the text. These are called stop words. Most often, these words are kept in a long list that is
compared against the text because there is no detectable characteristic attributable to them all
except for their minimal meaning in a sentence.

Vectorisation Because models need input in the format of numbers, the previously acquired
tokens need to be translated into a numerical representation, i.e., vectorised. There are many
vectorising approaches available, but the one used in this project is the TF-IDF vectoriser. This
vectoriser balances two important concepts: term frequency (TF) and document frequency (DF).
Term frequency is the idea that the more frequently a certain word appears in a sentence, the
more important it is1. Document frequency balances out topic-specific words by counting how
many documents (in this case, sentences) contain the token, which might be important if all
of the sentences have similar topics, e.g., if the dataset is of political Tweets, the term "party"
might not be as important as "corrupt", even though the former appears more often than the
latter. Because of this inverse relationship, inverse document frequency (IDF) is used. If 𝑑 𝑓𝑡 is the
document frequency of token 𝑡 and 𝑁 is the total number of documents, then inverse document
frequency of token 𝑡 is

𝑖𝑑 𝑓𝑡 = log(𝑁
𝑑𝑓𝑡

).

TF-IDF is then added as a weight to the token thus:

𝑤𝑡,𝑑 = (1 + log (𝑡 𝑓𝑡,𝑑)) · log (𝑁

𝑖𝑑 𝑓𝑡
),

where 𝑡 𝑓𝑡,𝑑 is the term frequency of token 𝑡 in document 𝑑.

2.2.3 Machine Learning Models

There is an abundance of ML models used in both research and business in all types of machine
learning, but the main types of models in supervised learning are for classification (labelling items
as belong to one or more categories), regression (finding dependency between independent and
dependent variables), and forecasting (predicting future behaviour based on past data). Since the
aim of the project is to label social media posts as fake or real news, this section will focus on the
two classification models used throughout the project.

Logistic Regression Logistic Regression is one of the most widely used ML classifiers since it
can easily be used for binary classification, which is also applicable for this project. The model
works well because it fits the input data to a sigmoid curve, as seen in Figure 2.1, which can be
used to classify the given data into two classes based on one or more features according to how
much the given values for the features lean one way or the other (Thorn 2020).

Transformer Introduced in 2017 by Vaswani et al., the transformer is the state-of-the-art model
used in every modern NLP project. Although it is just another machine learning architecture,
typically with encoders and decoders both using the Feed Forward Neural Network (FFNN),
and word embeddings, what distinguishes it from previous models used in NLP, like Long

1This is why stop word removal is essential for most vectorisers; otherwise, "the" would be the most important word
of all in English.

5

Figure 2.1: The sigmoid activation function used by Logistic Regression as made by Qef (2008).

Short-Term Memory (LSTM) networks and other Recurrent Neural Networks (RNNs), is the
addition of self-attention (Alammar 2020). Attention, visible in Figure 2.2, is a method of dealing
with long-range dependencies of words in sentences by keeping track of the distances between
dependent words and adding them to the weight of the tokens. The previously mentioned
FFNN is a massive neural network included in both the encoder and decoder stacks, and it is
unique in the fact that it does not have any backpropagation for changing the weights of the
network, the information goes only one way. Word embeddings are a way to add meaning to
words by representing the different features of them (acquired by analysing the context that they
usually appear in) with numbers. A list of these word embeddings is used when training the
model, which is usually a so-called vocabulary of tens of thousands of words. The transformer
architecture has gained its popularity thanks to the extremely effective combination of already
existing components (the FFNN, tokenisation, word embeddings, encoder and decoder stacks,
linear classifiers for probability calculation at the end of the architecture’s output) and new
technologies (self-attention).

2.2.4 BERT

Bi-directional Encoder Representations for Transformers (BERT) is an ML model with a trans-
former architecture that was published in 2018 by the team at Google (Devlin et al.). What
distinguishes BERT from a typical transformer is its bi-directionality of context (looking both
right and left of a word in a sentence to determine its context), achieved by using transformer
encoders for word embeddings and masking (hiding some words from a sentence and having
the model guess which words have been hidden) without any decoder stack (Alammar 2018).
Another "game" that the model has learnt sentence structure by is from replacing some words
with other words and seeing if the model can guess, firstly, which words are out of place, and
secondly, what words should be there instead.

The power of BERT is evident from the way it is used in machine learning projects. When it
is imported, it is already pre-trained from 800 million words in a collection of text documents
(corpus) called BooksCorpus (Devlin et al. 2018), collected from 11 films and the books that they
are based on (Zhu et al. 2015). The task of each project is not to use BERT from scratch, but to
do further training with a dataset and a specific task (like classification), the process of which is
called fine-tuning.

The activation function that BERT uses is GELU (Gaussian Error Linear Unit) because the "small
non-linearity [in] the negative range helps maintain the long relation tracking [...] in BERT"
(Buss 2022), seen in Figure 2.3.

6

Figure 2.2: The architecture of the first-ever transformer proposed by Vaswani et al. (2017) from Google
Brain and co.

Figure 2.3: The different Linear Unit functions compared, with the negative dip in GELU emphasised by
Buss (n.d.).

7

2.2.5 Machine Learning Model Evaluation Metrics

After an ML model has been built and fine-tuned, its performance needs to be evaluated by having
it predict the labels of a test dataset that it has not seen before and comparing the predictions with
the true dataset. There are different metrics that can be used, some with more drawbacks than
others, but the following is a summary of the most prevalent ones for binary classification.

Accuracy The simplest measure of performance, accuracy, is defined as the count of correct
predictions divided by all predictions. However, this metric suffers from the Class Imbalance
problem, which is the case when one class/category is more prevalent than the other, e.g., real
news being more frequent than fake news. In such a case the model might learn to predict only
the majority class, and this would result in a high accuracy. If 𝑇 and 𝐹 stand for ’True’ and ’False’,
e.g., correctly and incorrectly predicted, and 𝑃 and 𝑁 stand for ’Positive’ and ’Negative’, e.g., real
and fake news, then accuracy can be defined as

𝐴 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
.

Precision The definition of precision can be seen as the "exactness" of a model, i.e., of all of the
predictions about one class, e.g., real news, how many were correct. This metric encourages the
model to make fewer unsafe predictions since just one correct prediction would result in 100%
accuracy as the formula for precision is

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.

Recall The antithesis of precision, recall, measures the "completeness" of the model, i.e., how
many predictions of the total amount of a class, e.g., real news, the model predicted correctly.
Because this metric does not measure incorrect predictions, it encourages the model to make
more unsafe predictions to be more "complete" since the formula for it is

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

F1 The F1 score of a model is a metric that combines both precision and recall to find a balance
for both. Therefore, the formula for that is the harmonic mean of both, i.e.,

𝐹1 =
2 · 𝑃𝑟 · 𝑅
𝑃𝑟 + 𝑅

=
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.

Confusion Matrix The confusion matrix is a simple 2x2 table showing the counts for all of TP,
TN, FP, and FN, usually with a coloured gradient to help visualise the difference in the amounts.
This table is useful for identifying whether or how much any correct or incorrect predictions
are unbalanced, and the metric for the models of the project can be found in Section 6.1.2.

2.3 Existing Solutions
Because of the decades of research in the aforementioned fields, this section summarises the
relevant research in machine learning and natural language processing in classification tasks, and
the limitations that this project tries to rectify.

8

2.3.1 ML in Classification

ML has been used to classify a diverse range of items in a lot of fields, including health care, cyber
security, and abundantly in NLP (Mathews 2019). In cyber security, ML classification has helped
distinguish between malware and harmless software. In health care, ML classification has been
used to label tumours as either benign or malignant. Both classifications used multiple features to
analyse the behaviour and nature of the items, but neither used NLP since the features did not
include natural language. However, as described by Mathews, NLP is an important and highly
frequent co-requisite for ML classification tasks.

2.3.2 NLP in Classification

The one example of NLP in Mathews (2019) is, coincidentally, also of Tweet classification. The
researchers labelled Tweets as originating either from Hillary Clinton or Donald Trump, two
prominent actors in the American political sphere, using NLP techniques to pre-process the lexical
data, including a hash vectoriser, which, hashing the term frequency only, does not account
for (inverse) document frequency (Pedregosa et al. 2011). The model used in this example was
XGBoost, a version of the gradient boosted trees algorithm used in many other ML projects.

There have also been attempts to generalise NLP-based detection for a topic-agnostic model
(Castelo et al. 2019), which used certain pre-processing techniques that have been adapted in this
project, like NLTK pre-processing.

Apart from the models themselves and as can be seen from Table 2 in the NLP review done
by de Oliveira et al. (2021), there have been a multitude of datasets made by researchers, with
different types of content (social media posts, short statements, and whole articles), quantity
(from 330 posts to 60 million posts), labelling scale of veracity (from binary to six levels), and
annotators (crowd-sourcing, journalistic teams, or news agencies).

2.3.3 Limitations

Almost none of the solutions I have found offer a practical tool for non-technical people (either
researchers or programmers who can replicate the code in the research papers) to actually use2.
Even though research papers do not usually include the possible implementations of their models,
this paper focuses not only on the creation of the NLP ML model, but also on the practical aspects
of implementing it in a Django-hosted web application.

The other limitation of the research is that only a small portion discuss at length the dataset that
they use for training the model, which is among the most important aspects of the model because
it can highlight biases and skewed perspectives apparent in the dataset. This I have also tried to
rectify in the paper.

2Although there is one model I found, the model made by Meesad (2021) is in Thai.

9

3 Requirements

The problem to be solved, as stated in the introduction, arises from the increase of fake news
spread online, and was proposed by Dr Chris McCaig, a lecturer at the University of Glasgow.
The requirements of the solution to the problem are detailed below using the MoSCoW method,
a prioritisation technique frequently used in software development and other fields. The pri-
oritisation (most to least important) is thus: Must Have, Should Have, Could Have, and Will not
Have. The requirements are also split into functional and non-functional requirements, explained
below.

3.1 Functional Requirements
Functional requirements are the active aspects of a software system that users interact with and
can see the use of. Discussed below are the functional requirements gathered with the project’s
supervisor.

Must Have:
• The very first requirement of training a classifying ML model is the acquisition of a dataset

with labelled data. This allows the model to learn the characteristics of fake Tweets and
real ones and build a network to determine the difference between the two classes.

• After a dataset is acquired, an ML model needs to be built to get the dataset as an input and
learn from it.

• The model must be built into a usable tool in order to give it a Tweet or a piece of text
from a Tweet and receive back a prediction determining whether it is fake news or not.

Should Have:
• The tool that uses the model should be built as a web application for easier use by non-

technical users.
• The web application should be hosted on a domain that is accessible by the average user,

not just by university staff or students.

Could Have:
• There could be an option for a user to choose either of the two models for fake news detec-

tion, based on how they want to use it, i.e., either text-only or by using different features
that can be acquired from Twitter API. This could be a useful feature for extensibility, but
is not required by any means.

• It would be beneficial for the user to see what exactly was analysed from their input to the
model which predicts the veracity of the input. For example, if the user includes a link to a
Tweet, the website could show the text of the Tweet, the author’s username, description,
and verification status. This would increase the explainability of the model’s prediction.

Will not Have:

10

• Once a prediction has been given to the user’s submitted input text/Tweet, the tool could
have input for feedback about how well the model did, i.e., whether the prediction was
accurate or not, and fit the model according to the new input. However, this could be
complicated to implement and could easily be subject to abuse by users who purposely flag
fake news as real news or vice versa.

• It was discussed that the tool could be in a different form than a website - a browser
extension. However, it was also decided that browser extensions, while being more bespoke
and easier to adapt to a specific website, are too narrow in their features, which might be
crucial if or when Twitter API and UI change, while also being less understandable and
accessible to non-technical users, most of whom know what websites are but only some of
whom are aware of browser extensions.

3.2 Non-Functional Requirements
Non-functional requirements are the attributes of the software system that are required, i.e.,
characteristics that improve the quality, performance, and effectiveness of the project, but do
not do so in a very visible way to the general user. Discussed below are the non-functional
requirements gathered with the project’s supervisor.

Must Have:
• As stated above by de Oliveira et al. (2021), the average Internet user has about 54% accuracy

when distinguishing fake news from real news. Therefore, the model must achieve at least
this accuracy to be useful for Internet users; otherwise, there is no usable tool developed
for the project.

• The speed at which the class for one item is predicted must be reasonable for a user not to
give up on using the tool while it is in the process of predicting.

Should Have:
• While it is acceptable to experiment with datasets consisting of narrower topics, like Covid-

19 or climate change, it would be preferable for the final dataset to be broader in scope for
better generalisability, for example, if the dataset was about any political news.

• Very often the dataset that is used for training the model is imbalanced, i.e., one of the
classes is more frequent than the other. This issue should be fixed either by replicating
more instances of the minority class (by generating new ones or repeating existing ones)
or by removing enough instances of the majority class to match the minority class. The
latter should only be done when there are enough instances of the minority class to make
the input to the model large enough for significant training.

• The model should use one of the most modern and efficient algorithms and architectures
for both the Natural Language Processing and Machine Learning parts, e.g., BERT.

Could Have:
• The more complicated Twitter model could use multiple features for fake news prediction,

including description, username, and verified status of the author of the Tweet. This would
be useful for more fine-grained prediction with possibilities for additional text, e.g., the
description; however, it is only an improvement on the base model that would work well
enough on just the text of the Tweet.

• The model could support tokenisation of emojis in the dataset since they can be a very
important part of any text, clarifying or sometimes even changing semantics entirely (espe-
cially in the case of sarcasm, e.g., "I love how you never reply back..." if it is accompanied
by an unamused emoji) (Felbo et al. 2017). However, most often emojis only add to the
sentiment of the text, exclusively on which BERT has already been pre-trained.

11

• Regarding evaluation, the resulting confusion matrix of predicting fake news from the test
dataset could be balanced in terms of incorrect predictions for each class. However, most
often the confusion matrix is imbalanced, and there is not much that can be done to fix
that.

Will not Have:
• The model’s performance could have 100% accuracy for the given dataset. However, this

is generally impossible and considered useless since it would always be over-fitted to the
dataset and not be generalisable to completely new inputs.

12

4 Design

With the requirements in place, next it was time to design the project in such a way that they
would be achieved with the MoSCoW prioritisation in mind. This chapter gives an overview of
the aspects that such a project should include and explains the aspects in more detail.

4.1 Overview
The core elements of the project are outlined in Figure 4.1. As can be seen in the diagram, the
first part of the project will be acquiring an appropriate dataset containing both fake and real
news from items in a domain. After the initial acquisition, the dataset will need to be processed,
both from a cleaning and transformation perspective, in order to get text containing all features
to be analysed and further processed for model input. These first steps regarding the dataset are
explained in further detail in Section 4.2. As soon as the text is acquired, it will be needing to be
processed with Natural Language Processing techniques, the specifics of which are demonstrated
in Section 4.3, after which the input can be used for model training, detailed in Section 4.4.
Finally, the models will be hosted on a web application, the building of which is outlined in
Section 4.5.

4.2 Dataset Acquisition and Transformation
A dataset will be acquired, which is preferably domain-specific, like one containing only posts
from Facebook or Tweets from Twitter, in order for it to perform better for a specific purpose
since general all-purpose tools are very difficult to make. Next is one of the most critical parts of

1The BERT icon is taken from Alammar (2018).

Figure 4.1: The flow diagram of the project with the core elements1.

13

any Data Analysis project, as described by Elgendy and Elragal (2014): investigation, exploration,
transformation, and cleaning of the dataset.

With any division into classes, the balance of the dataset needs to be investigated and corrected,
if necessary. If there is a significant imbalance in the counts of instances in the classes, there are
two main approaches for the solution: either to generate more of the minority class to reach the
number of majority class items (by replicating existing ones or generating new ones based on
certain patterns in the existing ones) or to reduce the amount of the majority class by sampling
random ones until the amount of the minority class is reached. The latter approach is faster and
easier, but it does result in fewer items that the model can be trained on.

Oftentimes the dataset does not have the data prepared in the most appropriate format for how it
is planned to be used in the project. For example, if the IDs of Tweets are in a list in one cell in
the dataset and they need to be extracted for each row, this extraction is a form of transforming
the dataset in order to get appropriate values.

Finally, dataset cleaning is very often necessary for any project since only rarely do researchers
need all aspects of a dataset and often the unnecessary parts can be discarded. For example, if
there are unnecessary index columns or insignificant IDs of the author of a post, those columns
should be removed in order not to fill up memory unnecessarily when the dataset is loaded as a
variable. The more in-depth cleaning of the text is detailed in the next section.

4.3 Natural Language (Pre-)Processing
Once the dataset is cleaned, the text that will be the input to the Natural Language Processing
model needs to be cleaned as well. This needs to be done according to the pipeline outlined in
subsection 2.2.2, i.e., the text should be converted into being all-lowercase, tokenised, and stop
words should be removed. Additionally, the text could go through the stemming process, which
keeps only the roots of the words, e.g., where "consult", "consultant", and "consulting" all turn
into "consult", and also the lemmatisation process, which standardises the different possible forms
of words, e.g., where "is", "are", and "am" all turn into "be".

Afterwards, the prepared text can be vectorised with a TF-IDF vectoriser.

To note, this pre-processing stage is only necessary for the simpler model that is not implemented
with BERT since the BERT model uses a BERT tokeniser that does everything mentioned above.
However, more thought needs to be put into the parameters of the tokeniser, e.g., what the
maximum length of all input items should be since the BERT model expects standardised input.
This maximum length can be found by analysing all of the inputs that will be given to the model
and either reducing or keeping the amount of the maximum length.

4.3.1 BERT Tokeniser Parameters

Attention Masks Because of the strict input standardisation for the BERT model, i.e., having all
sentences be the same length, padding is used on the shorter sentences to lengthen them to be as
long as the longest one. Attention masks are a simple but effective way for the model to know
which tokens to pay attention to (the non-padded values) and which ones not to (the padded
values) by representing both kinds of values as an array the length of the sentence, each value (1
or 0) being a label for the specific token in the order.

Special Tokens When BERT was originally trained on 80 million terms, it was trained with
special tokens that separated sentences in meaningful ways. The [CLS] token started each
independent sentence to be classified (hence, CLS), and the [SEP] token separated two-sentence
inputs when training BERT on next-sentence prediction. Because of this format being used to
pre-train the model, fine-tuning that does not involve more than 80 million terms is best done

14

with the same format not to confuse the model. Therefore, the inclusion of these special tokens
is almost always the best practice.

4.4 Machine Learning Models
After tokenising and vectorising the input (either manually or with the BERT tokeniser), it can
be put into the models. The type of input will depend on which model will be used (TF-IDF
vectorised representations for Logistic Regression, and BERT tokeniser-processed sentences for
the BERT model). While training these models, it is also important to keep a baseline model to
compare the advanced models’ performance against. There are many libraries in Python and
other languages which provide this functionality.

For Logistic Regression, the input can just be fitted with simple commands in any language, then
evaluated with accuracy, F1 score, and confusion matrix.

For BERT, many more decisions need to be made on the parameters for instantiating the model,
like epoch size, batch size, and learning rate, detailed below.

4.4.1 BERT Model Training Parameters

Epoch Amount The amount of epochs, being the simplest of the parameters to understand, is
how many times the model is trained repeatedly. This parameter clearly correlates with how
over- or under-fitted the model is at the end of its training, i.e., the more epochs are used, the
more likely it is that over-fitting will occur, and vice versa. This is because the amount of training
impacts how closely the model’s weights are aligned to the training dataset, but not the validation
or testing datasets, which are the real test of the generalisability of the model. Before practically
running the training and comparing the resulting losses from each epoch, it is impossible to
determine the most suitable epoch amount, which is why it is generally advisable to save different
iterations of the model during training, e.g., one per epoch.

Batch size The size of the batch of inputs being put into the model at a time, which directly
affects how many times the weights in the model are updated, has an enormous impact on many
different aspects of the model’s performance, including training time, accuracy, computing costs,
and more (Varikuti 2022). A greater batch size means less computational cost and a shorter
training time, but most often it also results in worse accuracy and generalisability. This is why the
trade-offs need to be considered to balance the available resources and the goals of a supervised
learning project.

Learning Rate The learning rate of an ML model is essentially how much the model changes its
weights based on new input (or a new row of the same input). If one imagines the loss function
as a three-dimensional surface with smaller valleys (local minima) and a biggest valley (global
minimum), where being at the bottom of the biggest valley means reaching the minimum
possible loss (error), the learning rate means how much each new input would move the current
location of the model’s loss to a location which has relatively less loss, i.e., is lower. The smaller
the loss, the more likely it is that the model could get stuck in a local minimum, but a bigger
loss would mean that it might overstep the global minimum and be much less fine-grained in its
search.

4.5 Hosted Website
Building the website that will host the models involves four main parts: the backend, the frontend,
the models, and the hosting of the website. These are detailed below.

15

Backend Aspects of the website relating to its backend are the very first to design in order to
know how to write code for the web application in general and what the layout of the navigation
will be. Among these aspects is the framework to use, the URL navigation, and the interaction
between the pages. With the framework in place, the pages need to be set up along with their
URLs. For a simple ML tool, having two general pages is enough: one to include the form of the
input for the ML model (either raw text or a link to a Tweet) and one to show the results of the
prediction, with the possibility to show the user what exactly was used for the prediction, which,
in the case of the Tweet, includes multiple additional features, like user description, verification
status, etc.

Frontend To make it easier to design the frontend and not work with CSS alone, using a styling
framework like Bootstrap is best practice.

Model Inclusion After the ML models are trained, it is possible to save the models’ weights as
files to keep in the file directory of the website. These can then be loaded into code and used for
fake news predictions. Multiple libraries exist that solve this saving and loading problem, e.g., the
Python pickle library.

Hosting on a Domain The last part of the project is to host the website on a domain. Because
there is no financial support for the project and free hosting solutions exist with certain limitations,
it is important to design the website with restricted space requirements in mind, e.g., having
the whole website’s storage to be under 512 MBs. This task is made more difficult by using
complicated models with large storage requirements after saving their weights, e.g., the BERT
model can take up more than 400 MBs alone.

16

5 Implementation

5.1 Overview
The general process of implementing the project was done by following the design diagram
presented in Section 4.1, with decisions made for specific implementation details along the way.
The dataset acquisition and analysis, explained further in Section 5.2, was followed by input
building (Section 5.3) for the two models chosen, built, and trained (Sections 5.4 and 5.5), with
issues being solved as they appeared, after which their weights were saved to a website made
with Django, which was finally hosted on PythonAnywhere (Section 5.6).

5.2 The Dataset
5.2.1 Acquisition

The very first decision in acquiring a suitable dataset was what kind of dataset to look for,
especially regarding two aspects: the domain and the topic. Firstly, the domain is an important
aspect because of how variable items in that domain can be (either posts in a social media platform
or news articles in a news website), the feature diversity that can be acquired from those items,
and, more practically speaking, how easy it would be to access these items programmatically
with an API. Twitter was chosen as the domain because of these reasons:

• the homogeneity of the text documents, i.e., the fact that Tweets are limited to the same
length, which is an important benefit because of BERT always requiring the same input
shape (de Oliveira et al. 2021);

• the wide range of features that can be extracted from a single Twitter post, like author’s
description, verification status, location, etc.;

• the popular use of Twitter by many millions of users, many of which get their facts solely
from similar websites;

• the many critical and ongoing changes on the Twitter platform based on changes in CEOs
and their controversial policies, some of which have caused fake news and offensive content
to spread even more rapidly; and

• the accessibility of Twitter API for free educational use.
Secondly, the topic of the dataset was chosen to be politics because that is a topic that never ceases
to be relevant and discussed, as well as being the source of fake news and the place that it is found
in most.

Two Datasets Originally, the first dataset that was used to predict news was the PHEME dataset
with 330 Tweets (Zubiaga et al. 2016). This was done to get accustomed to analysing similar
datasets and building models off of them, while also reducing the training time that it would
take to fit the dataset to the model. However, the best weighted average F1 score that a simple
Logistic Regression algorithm could achieve with this dataset (in the scope of the project) was
61.2%.

Afterwards, the dataset chosen was FakeNewsNet, a much bigger Twitter dataset with about
400,000 Tweets just in the political sphere alone (Shu et al. 2018).

17

Table 5.1: The original headings of the FakeNewsNet dataset.

id news_url title tweet_ids

Figure 5.1: The error shown when trying to access a Tweet’s text without special privileges.

5.2.2 Analysis

As can be seen Table 5.1, the dataset is split into articles, which are categorised as either real or
fake news (by their inclusion in either politifact_real.csv or politifact_fake.csv files), and the Tweets
which mention this article as a genuine article, which is why the Tweets themselves can be
labelled as real or fake news by association. Thus, the original dataset did not have any features of
the fake or real news Tweets except for the ids of the Tweets associated with the article (under the
tweet_ids heading). This is because including any additional information on a large scale is against
Twitter’s Terms of Service. Therefore, the first part of analysing the Tweets was acquiring their
other features, which included the text at the minimum.

The first part for getting access to the Twitter API was making an account and registering all
of the security credentials with the service, while also learning how to use the API. However,
it was quickly discovered that the part of the API relevant to the project was not accessible by
the "Essential" access level alone, as seen in Figure 5.1. Therefore, I needed to apply for the
Educational access level to the API, for which the form can be found in Appendix A. This finally
gave access to the API necessary for Tweet gathering outlined below1.

The other features of Tweets that are acquired in Listing 5.1 using code from Kirenz (2022)
are the ones specified in the request, i.e., the Tweet-specific ones, like 𝑐𝑟𝑒𝑎𝑡𝑒𝑑_𝑎𝑡 (the data and
time that the Tweet was created at), 𝑡𝑒𝑥𝑡 (the source text of the Tweet), 𝑙𝑎𝑛𝑔 (the language of
the Tweet), 𝑎𝑢𝑡ℎ𝑜𝑟_𝑖𝑑 , 𝑠𝑜𝑢𝑟𝑐𝑒 (the device that the Tweet was published on, e.g., a mobile device
or personal computer), and the user-specific ones, like 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, and 𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑 (the
verification status of the user), where both sets of features were combined using the id of the
author of the Tweet as their user id.

As can be seen in the Listing, the number of Tweets that can be included in one request is limited
to 100, which is why this call was made multiple times with batches of 100 Tweet ids in each
request until the features for all Tweets were gathered.

1However, even this Educational access might be at risk as shown in Mehta and Singh (2023), which further shows
the need for two separate models where one is independent of Twitter API, as described in Section 1.2.

response = client.get_tweets(IDs[batch_ix : min(batch_ix + 100, n)],
tweet_fields=

["created_at", "text", "lang", "author_id",
"source"],

user_fields=
["location", "description", "verified"],

expansions="author_id")

Listing 5.1: Using the Python tweepy library to get Tweet features from both the Tweet and the author.

18

gs_1 = GroupShuffleSplit(n_splits=1, train_size=.7, random_state=111019)
train_val_ix, test_ix = next(gs_1.split(X, y, groups=X.article_id))

Listing 5.2: Using the sci-kit learn GroupShuffleSplit library to split the dataset into a training and
validation set2and a testing set.

5.2.3 Transformation

After further analysis, one problematic aspect of the dataset was found to be the diversity of
languages present. It was found that 11,708 Tweets (7.34%) in the training dataset alone were in
a language other than English. While a better BERT model like mBERT could support multiple
languages and might achieve even better generalisability if the final project could detect fake
news in multiple languages, the simpler, English-only BERT model was chosen, which meant
that it could only support Tweets made in the English language. This is further explained in
Section 6.3.

Another problem encountered was one that many datasets suffer from: class imbalance. Often-
times, there is a class that occurs much more frequently than another, and it is the responsibility
of the researcher who makes the ML model not to allow for predicting only the majority class
every time, which, if the classes are extremely unbalanced, would achieve deceptive results. As
discussed in Section 4.2, there are multiple methods of achieving balance between the classes,
but because of time constraints, the easiest method of down-sampling was chosen. Therefore,
the majority classes were down-sampled as in EliteDataScience.com (2022).

Because of the Tweets in the dataset often containing the same link to a news article they are
referring to, it was vital not to have Tweets relating to the same article in both the training
and testing sets because the model would easily learn to just look at the linked article and make
decisions based on that. This was the reason that even the simple Logistic Regression model
achieved 97% accuracy before any fine-tuning, which was too good to be true. Therefore, I
extracted the article_id for each Tweet in the dataset, grouped it by the article, shuffled and split
the Tweets into training, validation, and testing datasets using GroupShuffleSplit as from yatu
(2020), seen in Listing 5.2. As also noticeable in the Listing, a random_state variable was used to
keep the evaluation results of the model consistent and not subject to random variation from how
the datasets were split.

5.3 Input Building
As already mentioned above, the two different models required two different inputs to be able to
be trained and predict text. The varied input building for the models is discussed below.

5.3.1 Logistic Regression-Specific

For the Logistic Regression algorithm, input that was already in the form of sentences only
needed to be vectorised with a vectoriser from some library, which in previous projects was the
TF-IDF vectoriser since it proved to be the most effective. The whole process of encoding the
input (both for training and testing) is shown in Listing 5.3, which demonstrates how much
shorter the code for it is compared to input building for BERT, explained below.

2This is later split to get the training and validation sets individually, but the code for it (inspired by julliet (2021)) is
skipped to avoid repetition.

19

Get features for TF-IDF
tfidf = TfidfVectorizer()
tfidf.fit(train_text)
train_features = tfidf.transform(train_text)
test_features = tfidf.transform(test_text)

Listing 5.3: Vectorising input for the Logistic Regression algorithm with TF-IDF.

sen_w_feats = []
for index, row in data_df.iterrows():

combined = ""

combined += f"I created this Tweet at {row[’created_at’]} o’clock " + \
f"in the {row[’lang’]} language and in {row[’location’]} " + \
f"from {row[’source’]}. "

verification_status = "verified" if row["verified"] else "not verified"
combined += f"My name is {row[’name’]}, username is {row[’username’]} " + \

f"and I am {verification_status}. "

combined += f"I would describe myself as {row[’description’]}. "

combined += f"I wrote: {row[’text’]} "

Add the combined text to the list.
sen_w_feats.append(combined)

Listing 5.4: Combining all features into one paragraph per Tweet that BERT can then analyse.

5.3.2 BERT-Specific

The reason for input building being much more difficult for BERT in this specific project was
the inclusion of multiple features, many of which had different categories: numerical, categorical,
and lexical. One of the most important decisions for this project was how to combine all of the
different features into a model that accepts all of them. The original idea was to use different
feature-engineering methods for each type of feature: numerical features with standardisation
of numbers, categorical features with other types of standardisation, and lexical features with
Natural Language Processing techniques. This multi-modal approach would have involved
not just different types of feature engineering for every feature type, but also a Multi-Layer
Perceptron to combine these features and make decisions based on them, as per McCormick
(2021b).

Because the approach outlined above was too unnecessarily complicated for such a project, a
much simpler solution was found in McCormick (2021a) by including all of the different features
as a combined text paragraph for each Tweet, which was built with a template format as seen in
Listing 5.4. An example of the format being filled in with one item’s information can be found in
Figures 5.4 and 6.5.

After sentences have been made for every Tweet, they have to be encoded with the usual
NLP techniques, which are achieved by using BertTokenizer from HuggingFace’s transformers

20

input_ids = []
attention_masks = []
For every sentence...
for sent in sen_w_feats:

‘encode_plus‘ will:
(1) Tokenize the sentence.
(2) Prepend the ‘[CLS]‘ token to the start.
(3) Append the ‘[SEP]‘ token to the end.
(4) Map tokens to their IDs.
(5) Pad or truncate the sentence to ‘max_length‘
(6) Create attention masks for [PAD] tokens.
encoded_dict = tokenizer.encode_plus(

sent, # Sentence to encode.
add_special_tokens = True, # Add ’[CLS]’ and ’[SEP]’
max_length = max_len, # Pad & truncate all sentences.
truncation = True,
padding = ’max_length’,
return_attention_mask = True, # Construct attn. masks.
return_tensors = ’pt’, # Return pytorch tensors.

)

Add the encoded sentence to the list.
input_ids.append(encoded_dict[’input_ids’])

And its attention mask (simply differentiates padding from non-padding).
attention_masks.append(encoded_dict[’attention_mask’])

Listing 5.5: Encoding every sentence for BERT input.

Python library with the sentence as input. As seen in Listing 5.5, the tokeniser uses the same
parameters that were discussed in Subsection 4.3.1, i.e., special tokens and attention masks, but
other parameters are specified as well to improve consistency (in the case of max_length and
truncation) and efficiency (in the case of return_tensors being PyTorch tensors, which are from
another package used in the project).

5.4 Logistic Regression Model Training
As in building input, training the Logistic Regression algorithm was much simpler compared
to its BERT counterpart, as seen in Listing 5.6, where both training and evaluation is fit into
4 lines of code. The evaluation_summary() function is a simple Python function that includes a
description and two metrics from the sci-kit learn library: Classification report, which includes F1
score, accuracy, and other metrics, and Confusion matrix, explained in Section 2.2.5.

5.5 BERT Model Training
The BERT training code was adapted from McCormick (2021a).

21

Logistic Regression with TF-IDF
lr_tfidf = LogisticRegression()
lr_model_tfidf = lr_tfidf.fit(train_features, train_labels)
lrtfidf_test = lr_model_tfidf.predict(test_features)
evaluation_summary("LR (TF-IDF) test", test_labels, lrtfidf_test)

Listing 5.6: Training and evaluating the Logistic Regression algorithm.

5.5.1 Optimisation

The model training inspired by McCormick (2021a) uses an optimiser called AdamW, which
adapts step sizes based on individual weights during training (Graetz 2018). This optimiser step is
important to call before calling the learning rate scheduler step, which also optimises the training
of the model by dynamically changing the learning rate hyperparameter.

5.5.2 Memory Issues

One of the biggest issues when trying to implement BERT’s training was how much memory the
model was needing to encode all of the approximately 200,000 (extant) Tweet training dataset.
Neither running the code locally nor on Google’s Colaboratory platform with GPU-acceleration
helped. Therefore, the solution was to trade memory for speed of training with a parameter called
gradient checkpointing, which achieves a balance of two memory-saving techniques: saving all
activations on the forward pass of training and recomputing all of them on the backward pass
(Hugging Face Documentation n.d.). This method, while making training longer, allowed to fit
the model into memory and start training it.

5.5.3 GPU Acceleration

After solving the memory issue, the first significant problem was that training on a normal CPU
would take about 8 days per epoch (approximated). With the suggested epoch amount of 4,
the total time of training would take more than a month. This was a problem needing to be
solved immediately, and the solution to slow training with a CPU was to use GPU-accelerated
hardware that is built for fast and numerous calculations.

The first attempt at using the GPU for faster processing was with the help of Google’s Colabora-
tory service, which offers free GPU computation for a limited time and amount every month.
By moving the computational units, like PyTorch tensors, to the GPU, where they were used
for computation, the training time approximation changed from 32 days to about 20 hours (for
all 4 epochs). However, their computation limits are always changing, "having dynamic usage
limits that sometimes fluctuate" (Colaboratory n.d.), which meant that it was difficult to find
out certain limits and it was also impossible to keep training running for a continuous 20 hour
duration without staying awake for the full 20 hours. Therefore, another solution was required.

The second and final attempt at getting GPU-accelerated hardware was using my own personal
laptop. The way to use GPU acceleration on a programmatic level is to install Nvidia’s Compute
Unified Device Architecture (CUDA) Toolkit and the CUDA for Deep Neural Networks
(cuDNN) extension, after which there are not many resources online on how exactly to use it
since there are various versions for CUDA, cuDNN, and a limitation on the versions of libraries
they can be used for, e.g., Hugging Face and PyTorch. Once Nvidia allowed its users to log
in (Ridley 2023), only after some time did I find that PyTorch needs to be installed in the
environment with a CUDA version nested inside (while mine was already installed for previous

22

urlpatterns = [
path(’admin/’, admin.site.urls),
path(’’, project_views.home, name="home"),
path(’result/’, project_views.result, name=’result’),

]

Listing 5.7: The entire list of pages accessible on the Django-made website.

projects without CUDA), which then (after an environment restart) allowed PyTorch to finally
see and use the GPU available with the message:

There are 1 GPU(s) available.
We will use the GPU: NVIDIA GeForce RTX 2060

5.5.4 Validation Loss

During the training of the model, validation loss is calculated and shown in order to see how
well the model performs on unseen (validation) data as a trade-off to performing too well on seen
(training) data. This is to perform over-fitting in the long run.

5.6 Website Building
5.6.1 Django

The URL structure is simple and can be seen in Listing 5.7, where the home view uses the
index.html template and the result view uses the prediction.html template, both templates inheriting
from the base.html template.

The two view functions mentioned in Listing 5.7, home() and result(), are the two functions
responsible for the two pages users can visit: the home page and the prediction page, respectively.
home() just displays the index.html template, but result() takes as input the model chosen by the
user and the text input (either just text or a link to a Tweet), builds the appropriate input for the
chosen model, uses the model to predict the veracity of the input, and displays the appropriate
template with this prediction.

Standardisation of the pages the users can visit can be achieved by taking advantage of the
aforementioned template inheritance offered by Django, which allows setting a base template that
all (or any number of) other templates will use, with specific blocks set in place for customisation.
For example, seen in Listing 5.8 is the title HTML tag in base.html, which includes a block for
customising the specific tab title of each page, like "Home page" for index.html and "Prediction" for
prediction.html. The full template can be found in Appendix B, which includes linking Bootstrap
for implementing a more modern UI and another example of inheritance.

5.6.2 User Interface

The home page can be seen in Figure 5.2. A lot of white space was used around the core
functionality of the fake news detection tool in order for the user not to be overwhelmed with too
much functionality and bloat, similarly to Google Search’s simplistic approach. Instead, the core
elements were kept for the user to interact with: the title of the website, Fake News Classification,
which always redirects the user to the home page; the two radio select buttons for the user to
choose between which type of model they want to use; the input text area either for the text of

23

<title>
{% block title %}
{% endblock %}

</title>

Listing 5.8: Using Django template inheritance in base.html to have a standardised interface between the
two available templates.

Figure 5.2: The home page of the website with the Logistic Regression model chosen.

the Tweet in the case of Logistic Regression or for the link of the Tweet in the case of BERT;
and, finally, the submit button. In every piece of writing on the website, simple language is used
for the average, non-technical user to understand, which is why Logistic Regression nor BERT
is ever mentioned, but their characteristics ("text-only" or "feature-rich", respectively) are used.

The prediction of the input by the Logistic Regression model can be seen in Figure 5.3 for a fake
news Tweet taken directly from the dataset. As visible in the Figure, not only is the prediction
of the model shown, but the user can also see what exactly was analysed to get that prediction,
i.e., they can see the input text they entered at the same time as the prediction. While it is less
beneficial to see the same exact text while using the Logistic Regression model, the benefits of
this can be better seen in the case of the BERT model, as shown below.

The prediction of a real news Tweet taken from the dataset by the BERT model can be seen in
Figure 5.4. As visible in the Figure, the resulting paragraph from all features being combined
into one text (outlined in Subsection 5.2.2) is displayed to the user, who can see exactly what is
analysed to get BERT’s prediction of the Tweet they submitted as input.

To change the placeholder text of the input area for the user according to what type of model
they have chosen, jQuery was used in conjunction with setting the name attributes of the radio
select elements to model_select, while also specifying their respective values in the value attribute
of the HTML tag. With these elements and attributes in place, tag selection could be used to find
and change the text area’s placeholder with the code shown in Listing 5.9.

24

Figure 5.3: The prediction of text-only input by the LR model.

Figure 5.4: The prediction of the Tweet link input by the BERT model.

$(’input[type=radio][name=model_select]’).change(function() {
if (this.value == ’simple_model’) {

$(’form’).find("textarea[type=text]").each(function(){
$(this).attr("placeholder", "Paste the text of the Tweet here!");

});
}
else if (this.value == ’complex_model’) {

$(’form’).find("textarea[type=text]").each(function(){
$(this).attr("placeholder", "Put the link of the Tweet here!");

});
}

});

Listing 5.9: Changing the input field’s placeholder according to which model has been chosen using
jQuery.

25

regex_numbers = re.findall(’/status/(\d+)’, link)
if len(regex_numbers) == 0:

return "no link"
tweet_id = regex_numbers[0]

Listing 5.10: Using a regular expression to find the ID of the Tweet from a link to it.

5.6.3 Form Submission

The input for the BERT model on the website is a simple link to a Tweet that the user wants to
analyse. In order to fetch that Tweet’s features programmatically, the ID of the Tweet is acquired
from the provided link with the help of a regular expression (regex) as seen in Listing 5.10, which,
if found, is passed to the aforementioned tweepy client that fetches the features of the Tweet for
analysis by BERT. As seen in the Listing, the regex finds all numbers after a certain phrase and
assumes the correct one is the first because there can be many extra numbers attached to the URL
passed in from referral links, etc. Additionally, the regex depends on the URL scheme of Twitter
not changing in the near future because, as of March 2023, the ID of the Tweet follows directly
after the /status/ subdirectory. If a user submits an incorrectly formatted link or the URL scheme
changes, the prediction returns the error "That does not seem to be a valid link to a Tweet." to
the user. If the Tweet is removed from Twitter, as sometimes happens especially to fake news
Tweets that become popular, the prediction shows "It seems that the Tweet has been removed."
to the user.

26

6 Evaluation

6.1 Evaluation Metrics
6.1.1 Standard Performance Metrics

Evaluation of the previously implemented models should take into account the performance of
the baseline model. While training the two models, an additional "DummyClassifier" from the
sci-kit learn library was trained, which counts only the frequency of tokens and nothing else. As
can be seen in Figure 6.1 and as expected, its accuracy is little more than 50%, which is almost as
good as guessing 50-50, and its F1 score is a low 35.6%. As can also be seen in the Figure, the
baseline model could only predict all Tweets as Real News.

The final accuracy of the Logistic Regression algorithm was 82.8%, with the F1 score being
82.6%. As expected, the performance of such a simple model with only one feature being analysed
is moderately better than the performance from the earlier PHEME dataset, which had an F1
score of 61.2%. As for the BERT model, its F1 score and accuracy were much higher: 99.4%
and 99.2%, respectively. This dramatic increase in performance is partly due to the incredible
pre-training of BERT with 80 million tokens and its state-of-the-art architecture of a transformer
model, but also because of multiple features being used instead of just the text of a Tweet. The
drawback of such a high performance score, compared to the scores achieved in literature with
models having been trained with more resources and bigger datasets, is that it is almost definitely
too high to be viably generalisable to new input. This is discussed further on.

6.1.2 Confusion Matrix

The confusion matrix for the Logistic Regression model is shown in Figure 6.3. As can be seen,
the confusion matrix reflects LR’s accuracy and F1 score, but is also predicting more fake news
as real news than vice versa, the skewing of which, while ideally not being skewed either way, is
problematic for users who will believe the prediction of the model.

The confusion matrix for the BERT model is demonstrated in Figure 6.2, the code for creating it
being adapted from Mesquita (2020). As seen in the Figure, at least 99% of both classes (Fake and
Real) are predicted correctly, while less than 1% are not. This is reflected in the accuracy and F1
score of the model. As can also be seen by comparing the counts for both classes, the amount of
fake news Tweets in the testing dataset is less than half of real news Tweets, which, while it may
seem to cause a class imbalance, is not used in the further training of the model, meaning that
there is no impact on the model by an imbalanced testing dataset.

When comparing the percentage errors for false predictions, it can be seen that there are about
3 times more real news being predicted as fake news, which signifies that the matrix is skewed
towards predicting a Tweet as fake news. While, ideally, this skew should be fixed, there were no
solutions found, and, as per the Could Have non-functional requirement in Section 3.2, this was
left as is. Furthermore, real news being mislabelled as fake news can also be seen as a benefit to
the user as they are encouraged to scrutinise news that they read (especially on Twitter), whereas
labelling fake news as real news might lead them to trust the fake news even more than before
using the tool.

27

Figure 6.1: Standard performance metrics and confusion matrix for the Dummy Most-Frequent (MF)
baseline model.

Figure 6.2: A standardised confusion matrix for BERT after final training.

28

Figure 6.3: A standardised confusion matrix for the Logistic Regression model.

29

Figure 6.4: The losses during BERT training in each epoch.

6.2 Generalisability
Perhaps the most important evaluation metric for a Machine Learning model’s performance is
its ability to be generalisable to new input that it has not seen before. The more generalisable
a model is, the better the likelihood that users would find the tool useful and want to improve
their lives with it. While the confusion matrix is useful for testing the model’s performance on a
testing set that is similar to the training dataset, the training and validation losses over time and
the model’s performance on a new set of testing values give valuable insight into how useful the
tool will be to users.

6.2.1 Losses During Training

The training and validation losses during the training of the model are demonstrated in Figure
6.4. As can be seen in the 4 epochs that were implemented, the training loss continued decreasing
until the very last epoch, where it did not noticeably change. In the very last epoch, however, it
is visible that the validation loss increased to a value equal to the first epoch’s value. This increase
in the validation loss signifies that the amount of epochs chosen was too high, resulting in the
model being over-fitted to the training dataset. As explained in Section 4.4.1, over-fitting means
that the dataset is too dependent on the training dataset and is therefore less generalisable to new,
never before seen input.

6.2.2 Modern Input

To check how the models perform with unseen and modern Tweets, a Tweet from a PolitiFact
article by Putterman (2021) was chosen, which was labelled as False by PolitiFact’s Truth-O-
Meter score. The BERT model’s correct prediction can be seen in Figure 6.5, while Logistic
Regression model’s prediction was also correct. However, for many other modern fake news
Tweets (ones which were not removed because of their infamy, which has happened to many
of them due to them being featured on PolitiFact or becoming viral online in general), the
prediction was incorrectly attributed as real news. This could be explained by the Tweet in the
Figure containing the person-phrase "Bill Gates", which appears more than 50 times more in
fake news Tweets than real news ones in the dataset. This and more phrases are analysed in
Appendix C. As can be seen, in many cases, politically significant phrases are featured in one

30

Figure 6.5: BERT model’s prediction on the veracity of the Bill Gates vaccine Tweet.

class more often than the other, which means that the model has been trained to associate those
phrases with the class they are more frequent in.

6.2.3 Potential Reasons Why

Since evaluation leads us to believe that the model is over-fitted to the data, an investigation
should be done into the reasons why this is so and how it could be remedied. The three possible
reasons why the model is over-fitted are thus: the Twitter character limit change, different
political topics, and different phrases for each class.

Firstly, the FakeNewsNet dataset was collected in 2018, one year after the Twitter character limit
was increased from 140 to 280 characters. This, however, is another recent policy change with
Twitter again increasing the character limit to 4,000 characters for a select user subset (Reimann
2023). These two increases change not only the literal formatting of the Tweet, but also the way
that the authors write the Tweet in its language, particularly, conciseness.

Secondly, the political landscape has changed since 2018, with different topics being discussed
now and a change in the prominence of even the same topics. Since only political Tweets were
used in the dataset, modern Tweets would obviously have very different topics than in 2018.

Finally, even the phrases in the existing dataset help the model lean towards real news or fake
news for a particular Tweet containing these phrases. As discussed in Section 6.2.2, more analysis
than just the one in Appendix C should be done, which afterwards should be used for a more
standardised dataset that focuses on language alone.

6.3 Further Improvements
As mentioned previously, since the dataset came with about 7.34% of Tweets present being in
foreign languages, a significant portion of valuable information was lost only because a standard
BERT model was chosen and integrated into the project. In order to include these Tweets, it
would be beneficial to choose a multilingual model like mBERT for similar datasets not to lose
important information. At the minimum, it would also be possible to incorporate a BERT model
that supports the second-most frequent language found in the dataset, Japanese, as in Koca (2021).

Another improvement, stemming from analysing the confusion matrix, would be to fix the

31

skewed nature of incorrect predictions to permit about an equal amount of false positives as false
negatives. This could be done by analysing certain phrases that might be skewing the model
predictions, like in Appendix C.

Additionally, as seen during evaluation, the validation loss of BERT increased in the final epoch,
which means it suffered from over-fitting. During the next training of the model, the losses
should be kept in a data structure and the training loop should stop in case the validation loss
stays the same or even increases in an epoch, which would reduce the overall over-fitting.

The final improvement worth mentioning is the missed Will not Have functional requirement of
continuously improving and fine-tuning the model with user input about how well the model
predicted the Tweet. This improvement, while being difficult to implement with the delicate
nature of user trust and avoidance of misuse, would be an invaluable asset to the project as it
would greatly reduce over-fitting because of Tweets being widely varied and it would allow
the models to learn continuously as the fake news landscape on Twitter and other social media
platforms changes.

32

7 Conclusion

The Internet has seen an exponentially increasing rise of fake news propagation on every social
media platform there is, especially on Twitter now that it is both a frequent source of news for
its users and a company with changing leadership, leading to fluctuating policies on fake news
detection and reduction.

In order to help Twitter users distinguish between fake and real news, who are about 54%
accurate at doing so in general, we proposed to build a usable tool to detect fake news in Tweets,
with a Machine Learning model that uses Natural Language Processing as the driving decision-
maker. The models were then evaluated with standard Machine Learning evaluation metrics,
like accuracy, F1 score, and confusion matrix, and then built into the website, which was hosted
online.

To do this, a dataset with about 400,000 Tweets was acquired, analysed, and transformed to
extract multiple features of a Tweet, like its text, source, language, and its author’s description
and verification status. These features were then processed and encoded as input for two different
models: Logistic Regression and BERT, a modern Natural Language Processing model with a
transformer architecture.

The models were then trained with the given input. Multiple techniques were used to optimise
their performance, like TF-IDF vectorising for the Logistic Regression model and AdamW
optimising for the BERT model. Additionally, validation loss was used to reduce over-fitting.

Afterwards, the models were evaluated on their performance. While Logistic Regression achieved
only 82.8% accuracy and an F1 score of 82.6%, BERT’s accuracy was 99.2%, with an F1 score of
99.4%. While this seems like an impressive score for the dataset, this high of an F1 score implies
over-fitting of the model to the given dataset, which is demonstrably shown by not correctly
predicting modern fake news Tweets acquired from PolitiFact.

These models were then saved and put into a Django website with Bootstrap, a modern CSS frame-
work, and then hosted on PythonAnywhere. It is available here: http://fakenewsuofg.pythonanywhere.com.

With all Must Have and Should Have requirements in place, this project provides a contribution
to the fields of Machine Learning, Natural Language Processing, and, more specifically, Fake
News Detection by creating and spreading awareness of an online tool for people to use to help
them detect fake news online by simply copy-pasting the text or link of a Tweet into the tool and
letting the model analyse it for them. This can then act as a stepping-stone for stronger integrity
of news online.

http://fakenewsuofg.pythonanywhere.com

33

A Twitter API Educational Access Form

How will you use the Twitter API or Twitter Data?
My dissertation project in my final year as an undergraduate University of Glasgow student is
about using Natural Language Processing in Machine Learning to build a model that could tell
fake and real news distributed on social media apart. As Twitter is a very widely used platform
to spread misinformation by malicious users, I want to extract features from Tweets that could
be useful in building such a model, like the source text and the time they were posted. With
this model, I plan to create a tool (so far the plan is for a website) for users to input the text or
URL of a Tweet to better understand whether that Tweet is likely to be fake news, which would
hopefully reduce the spread of misinformation on social media.

GitHub link: https://github.com/xid-er/Fake-News-Detection

Please describe how you will analyze Twitter data including any analysis of Tweets or
Twitter users.
I plan to extract specific features from Tweets in the fake and real news-annotated dataset I have
to build a machine learning model with BERT preprocessing and a Linear Regression model.
The features will be: source text, creation time, user description and verification status.

Please describe how and where Tweets and/or data about Twitter content will be displayed
outside of Twitter.
The information about these Tweets will be aggregated into the dataset analysis section of my
dissertation, which may or may not be published in the end. The same data mentioned above
will be analysed, but any usernames or other types of sensitive information will be removed from
publication.

34

B Base Django Template for Website

Displayed in Listing B.1.

35

<!DOCTYPE html>
{% load static %}

<html lang="en" dir="ltr">
<head>
<meta charset="utf-8">

<title>
{% block title %}
{% endblock %}

</title>
<link rel="stylesheet" href="{% static ’css/base.css’ %}" />
<link rel="shortcut icon" type="image/png" href="{% static

’images/favicon.ico’ %}"/>
<link

href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bootstrap.min.css"
rel="stylesheet"
integrity="sha384-rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG65"
crossorigin="anonymous">

</head>
<body id="header" style="--bs-bg-opacity: .8;">
<header>
<div class="p-5 text-center">
<div class="mask" style="background-color: rgba(0, 0, 0, 0.5);">
<div class="d-flex justify-content-center align-items-center h-100">
<div class="text-white">
<h1 class="mb-3"><a class="text-white text-decoration-none" href="{%

url ’home’ %}">Fake News Classification</h1>
</div>

</div>
</div>

</div>
</header>
{% block body %}
{% endblock %}
<script

src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/bootstrap.bundle.min.js"
integrity="sha384-kenU1KFdBIe4zVF0s0G1M5b4hcpxyD9F7jL+jjXkk+Q2h455rYXK/7HAuoJl+0I4"
crossorigin="anonymous"></script>

<script src="{% static ’js/jquery-3.3.1.min.js’ %}"
crossorigin="anonymous"></script>

<script src="{% static ’js/result-jquery.js’ %}"
crossorigin="anonymous"></script>

</body>
</html>

Listing B.1: The base template, using inheritance in the title and body blocks, with Bootstrap linked in
the template.

36

C Dataset Phrase Analysis

Bill Gates:

• Fake: 608 / 108_930 (0.56%)
• Real: 44 / 296_170 (0.01%)

Trump:

• Fake: 23_161 (21.26%)
• Real: 59_694 (20.16%)

Clinton:

• Fake: 3049 (2.80%)
• Real: 8842 (2.99%)

Pelosi:

• Fake: 1295 (1.19%)
• Real: 1740 (0.59%)

Vaccine:

• Fake: 6040 (5.54%)
• Real: 568 (1.92%)

37

Bibliography

Alammar, J. (2018), ‘The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learn-
ing)’. [Accessed January 31st, 2023].
URL: http://jalammar.github.io/illustrated-bert/

Alammar, J. (2020), ‘The Illustrated Transformer’. [Accessed February 9th, 2023].
URL: http://jalammar.github.io/illustrated-transformer/

Buss, J. (2022), ‘Activation function GELU in BERT’. [Accessed January 29th, 2023].
URL: https://iq.opengenus.org/activation-function-in-bert/

Buss, J. (n.d.), ‘Activation function GELU in BERT’. [Accessed March 14th, 2023].
URL: https://iq.opengenus.org/activation-function-in-bert/

Castelo, S., Almeida, T., Elghafari, A., Santos, A., Pham, K., Nakamura, E. and Freire, J. (2019),
A Topic-Agnostic Approach for Identifying Fake News Pages, in ‘Companion Proceedings of
The 2019 World Wide Web Conference’, WWW ’19, Association for Computing Machinery,
New York, NY, USA, p. 975–980.
URL: https://doi.org/10.1145/3308560.3316739

Colaboratory, G. (n.d.), ‘Google Colaboratory Frequently Asked Questions’. [Accessed February
26th, 2023].
URL: https://research.google.com/colaboratory/faq.html#resource-limits

Coursera (2022), ‘3 types of Machine Learning You should know’. [Accessed January 29th, 2023].
URL: https://www.coursera.org/articles/types-of-machine-learning

de Oliveira, N. R., Pisa, P. S., Lopez, M. A., de Medeiros, D. S. V. and Mattos, D. M. F. (2021),
‘Identifying Fake News on Social Networks Based on Natural Language Processing: Trends
and Challenges’, Information 12(1).
URL: https://www.mdpi.com/2078-2489/12/1/38

Dean, G. (2022), ‘Twitter users with 2-factor authentication said they were locked out of their
accounts soon after Elon Musk said he was ridding the site of ’bloatware’’. [Accessed February
4th, 2023].
URL: https://www.businessinsider.com/elon-musk-twitter-users-two-factor-authentication-locked-
out-accounts-2022-11

Deng, L. and Liu, Y. (2018), "A Joint Introduction to Natural Language Processing and to Deep
Learning", Springer Singapore, Singapore, pp. 1–22.
URL: https://doi.org/10.1007/978-981-10-5209-5_1

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018), ‘BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding’.
URL: https://arxiv.org/abs/1810.04805

DiSilvestro, A. (2022), ‘How To Identify Fake News From Real News Online’. [Accessed
February 4th, 2023].
URL: https://www.searchenginejournal.com/fake-news-vs-real-news/459719

38

Elgendy, N. and Elragal, A. (2014), "Big Data Analytics: A Literature Review Paper", in P. Perner,
ed., ‘Advances in Data Mining. Applications and Theoretical Aspects’, Springer International
Publishing, Cham, pp. 214–227.

EliteDataScience.com (2022), ‘How to Handle Imbalanced Classes in Machine Learning’. [Ac-
cessed February 19th, 2023].
URL: https://elitedatascience.com/imbalanced-classes

Felbo, B., Mislove, A., Søgaard, A., Rahwan, I. and Lehmann, S. (2017), Using millions of
emoji occurrences to learn any-domain representations for detecting sentiment, emotion and
sarcasm, in ‘Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing’, Association for Computational Linguistics.
URL: https://doi.org/10.18653/v1/d17-1169

Graetz, F. M. (2018), ‘Why AdamW matters’. [Accessed February 27th, 2023].
URL: https://towardsdatascience.com/why-adamw-matters-736223f31b5d

Holan, A. D. (2018), ‘Politifact - the principles of the truth-O-meter: PolitiFact’s methodology
for independent fact-checking’. [Accessed January 20th, 2023].
URL: https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-
methodology-i

Hugging Face Documentation (n.d.), ‘Performance and Scalability: Gradient Checkpointing’.
[Accessed February 26th, 2023].
URL: https://hugging face.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing

julliet (2021). [Accessed February 26th, 2023].
URL: https://stackoverflow.com/a/69029384/10197907

Kirenz, J. (2022), ‘Twitter API v2, tweepy and pandas in Python’. [Accessed February 26th,
2023].
URL: https://www.kirenz.com/post/2021-12-10-twitter-api-v2-tweepy-and-pandas-in-
python/twitter-api-v2-tweepy-and-pandas-in-python/

Koca, D. (2021), ‘Japanese multiclass text classification with 97% accuracy using BERT’.
[Accessed February 26th, 2023].
URL: https://towardsdatascience.com/japanese-multiclass-text-classification-with-97-accuracy-
using-bert-11b1fdc7c27e

Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F.,
Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A.,
Sunstein, C. R., Thorson, E. A., Watts, D. J. and Zittrain, J. L. (2018), ‘The science of fake
news’, Science 359(6380), 1094–1096.
URL: https://www.science.org/doi/abs/10.1126/science.aao2998

Mathews, S. M. (2019), "Explainable Artificial Intelligence Applications in NLP, Biomedical,
and Malware Classification: A Literature Review", in K. Arai, R. Bhatia and S. Kapoor, eds,
‘Intelligent Computing’, Springer International Publishing, Cham, pp. 1269–1292.

McCormick, C. (2021a), ‘Combining Categorical and Numerical Features with Text in BERT’.
[Accessed February 20th, 2023].
URL: https://mccormickml.com/2021/06/29/combining-categorical-numerical-features-with-bert/

McCormick, C. (2021b), ‘Mixing BERT with Categorical and Numerical Features’. [Accessed
February 25th, 2023].
URL: https://www.youtube.com/watch?v=NbbsVcs42jE

39

Meesad, P. (2021), ‘Thai fake news detection based on information retrieval, Natural Language
Processing and machine learning’, SN Computer Science 2(6).
URL: https://link.springer.com/article/10.1007/s42979-021-00775-6

Mehta, I. and Singh, M. (2023), ‘Twitter to end free access to its API in Elon Musk’s latest
monetization push’. [Accessed February 26th, 2023].
URL: https://techcrunch.com/2023/02/01/twitter-to-end-free-access-to-its-api/

Mesquita, V. (2020), ‘Nice Confusion Matrix with percentage cbar’. [Accessed February 28th,
2023].
URL: https://gist.github.com/mesquita/f6beffcc2579c6f3a97c9d93e278a9f1

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn: Machine Learning in Python’, Journal
of Machine Learning Research 12, 2825–2830.

Putterman, S. (2021), ‘Bill Gates said we need vaccines that halt transmission. He didn’t say the
COVID-19 shots don’t work’. [Accessed February 26th, 2023].
URL: https://www.politifact.com/factchecks/2021/nov/17/tweets/bill-gates-said-we-need-vaccines-
halt-transmission/

Qef (2008), ‘The logistic curve’. [Accessed March 16th, 2023].
URL: https://en.wikipedia.org/wiki/Sigmoid_function#/media/File:Logistic-curve.svg

Reimann, N. (2023), ‘Twitter Boosts Character Limit To 4,000 For Twitter Blue Subscribers’.
[Accessed March 22nd, 2023].
URL: https://www.forbes.com/sites/nicholasreimann/2023/02/08/twitter-boosts-character-limit-
to-4000-for-twitter-blue-subscribers/?sh=791be5aa5ab8

Ridley, J. (2023), ‘Nvidia’s email verification service went down today, but is back now with
some delays’. [Accessed February 12th, 2023].
URL: https://www.pcgamer.com/nvidias-email-verification-is-down-blocking-logins-to-geforce-now-
and-geforce-experience/

Schrael, R. (2022), ‘Twitter ends Covid misinformation policy under Musk’. [Accessed February
4th, 2023].
URL: https://www.bbc.co.uk/news/technology-63796832

Shu, K., Mahudeswaran, D., Wang, S., Lee, D. and Liu, H. (2018), ‘FakeNewsNet: A Data
Repository with News Content, Social Context and Spatialtemporal Information for Studying
Fake News on Social Media’.
URL: https://arxiv.org/abs/1809.01286

Thorn, J. (2020), ‘Logistic Regression Explained’. [Accessed January 30th, 2023].
URL: https://towardsdatascience.com/logistic-regression-explained-9ee73cede081

Varikuti, M. (2022), ‘What Is the Effect of Batch Size on Model Learning?’. [Accessed February
20th, 2023].
URL: https://pub.towardsai.net/what-is-the-effect-of-batch-size-on-model-learning-196414284add

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and
Polosukhin, I. (2017), ‘Attention Is All You Need’.
URL: https://arxiv.org/abs/1706.03762

yatu (2020). [Accessed February 20th, 2023].
URL: https://stackoverflow.com/a/61337958/10197907

40

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A. and Fidler, S. (2015),
‘Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies
and Reading Books’.
URL: https://arxiv.org/abs/1506.06724

Zubiaga, A., Liakata, M., Procter, R., Wong Sak Hoi, G. and Tolmie, P. (2016), ‘Analysing How
People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads’,
PLOS ONE 11, 1–29.
URL: https://doi.org/10.1371/journal.pone.0150989

	Introduction
	Motivation
	Goals
	Structure

	Background
	Fake News Definition
	Technical Explanations
	Machine Learning
	Natural Language Processing
	Machine Learning Models
	BERT
	Machine Learning Model Evaluation Metrics

	Existing Solutions
	ML in Classification
	NLP in Classification
	Limitations

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Design
	Overview
	Dataset Acquisition and Transformation
	Natural Language (Pre-)Processing
	BERT Tokeniser Parameters

	Machine Learning Models
	BERT Model Training Parameters

	Hosted Website

	Implementation
	Overview
	The Dataset
	Acquisition
	Analysis
	Transformation

	Input Building
	Logistic Regression-Specific
	BERT-Specific

	Logistic Regression Model Training
	BERT Model Training
	Optimisation
	Memory Issues
	GPU Acceleration
	Validation Loss

	Website Building
	Django
	User Interface
	Form Submission

	Evaluation
	Evaluation Metrics
	Standard Performance Metrics
	Confusion Matrix

	Generalisability
	Losses During Training
	Modern Input
	Potential Reasons Why

	Further Improvements

	Conclusion
	Appendices
	Twitter API Educational Access Form
	Base Django Template for Website
	Dataset Phrase Analysis
	Bibliography

